अमूर्त

A normalization method based on variance and median adjustment for massive mRNA polyadenylation data

Guoli Ji, Ying Wang, MingchenWu, Yangzi Zhang, Xiaohui Wu


This paper proposed a normalizationmethod based on minimumvariance and median adjustment (MVM), and then made a comprehensive comparison of three normalization methods including DESeq, TMMand MVM. In this study, the MVM method was evaluated using polyadenylation [poly(A)] data and gene expression data fromArabidopsis by ways of empirical statistical criterias of mean square error (MSE) and Kolmogorov-Smirnov (K-S) statistic. Experimental results demonstrated the high performance ofMVMmethod in that it could accurately remove the systematic bias and make the distributions of normalized data stable.


अस्वीकृति: इस सारांश का अनुवाद कृत्रिम बुद्धिमत्ता उपकरणों का उपयोग करके किया गया है और इसे अभी तक समीक्षा या सत्यापित नहीं किया गया है।

में अनुक्रमित

  • कैस
  • गूगल ज्ञानी
  • जे गेट खोलो
  • चीन राष्ट्रीय ज्ञान अवसंरचना (सीएनकेआई)
  • उद्धरण कारक
  • ब्रह्मांड IF
  • इलेक्ट्रॉनिक जर्नल्स लाइब्रेरी
  • रिसर्च जर्नल इंडेक्सिंग की निर्देशिका (डीआरजेआई)
  • गुप्त खोज इंजन लैब्स
  • आईसीएमजेई

और देखें

Flyer