अमूर्त

Dynamics of a two-degree-of freedom system with a rigid stop: Chattering-impact and subharmonic motions

Xifeng Zhu


The dynamic model of a two-degree-of-freedom system with a rigid stop is considered. The multi-impact motions of the one excitation period, subharmonic motions and chattering-impact characteristics of the system are analyzed by Runge-Kutta numerical simulation algorithm, and furthermore the saddle-node and grazing bifurcations between p/1 motions are revealed exactly. The research results show that a series of grazing bifurcations occur with decreasing frequency so that the impact number p of p/1 motions correspondingly increases one by one, a series of saddle-node bifurcations occur with increasing frequency so that the impact number p of p/1 motions correspondingly decreases one by one and there exists frequency hysteresis range and multiple coexistence attractors between p/1 and (p+1)/1 motions. In the low exciting frequency case, the impact number p of p/1 motions becomes big enough and chattering-impact characteristics will be appearing. The transition law from 1/1 motion to chattering-impact motion is summarized explicitly.


अस्वीकृति: इस सारांश का अनुवाद कृत्रिम बुद्धिमत्ता उपकरणों का उपयोग करके किया गया है और इसे अभी तक समीक्षा या सत्यापित नहीं किया गया है।

में अनुक्रमित

  • कैस
  • गूगल ज्ञानी
  • जे गेट खोलो
  • चीन राष्ट्रीय ज्ञान अवसंरचना (सीएनकेआई)
  • उद्धरण कारक
  • ब्रह्मांड IF
  • रिसर्च जर्नल इंडेक्सिंग की निर्देशिका (डीआरजेआई)
  • गुप्त खोज इंजन लैब्स
  • यूरो पब
  • आईसीएमजेई

और देखें

Flyer