अमूर्त
Mathematical expression of 1D-nanodoping
Pierre Hillion
1D -nanodoping is supposed to be a perturbation generated by a sequence of delta Dirac pulses satisfying the relation ðï¤[sin(ðï¸)] = ?n ï¤(ï¸ï€n) where n is an integer. Applications are discussed first for acoustic waves in a jerky flow, and for a scalar Bessel beamin a flow with a nanodoped velocity then for TE, TM fields inside a perfect conductor cylindrical wave gui-de with a nanodoped permittivity. We finally consider electromagnetic flashes.
अस्वीकृति: इस सारांश का अनुवाद कृत्रिम बुद्धिमत्ता उपकरणों का उपयोग करके किया गया है और इसे अभी तक समीक्षा या सत्यापित नहीं किया गया है।