अमूर्त
Oil Derived from Fats of Animals and Poultry as Additives to Diesel
K Vijayaraghavan* and SP Kamala Nalini
A novel method of solid waste treatment is proposed with the concept of biodiesel production using waste fats obtained from goat, pork, and chicken as feedstocks. The fats of animals and poultry were converted into the oil using rendering operation. The efficiency of rendering operation was determined based on the mass of oil production from a known mass of fat. The results showed that the conversion efficiency from fats to oil was 88% ± 2%, 91% ± 1%, and 92% ± 1% respectively with respect to goat, pig, and chicken fat. The formed oil was characterized for its density, kinematic viscosity, acid value, calorific value and its fatty acid composition. The calorific value of the oil determines its energy capacities towards burning. The results showed that goat, pig, and chicken oil had a calorific value of 39.894 ± 0.170 MJ/kg, 40.285 ± 0.220 MJ/kg, and 39.623 ± 0.120 MJ/kg. The GC-MS analysis showed the presence of oleic acid, eicosanoic acid and 1-octanol 2-butyl in goat oil. While 17-pentatriacontene, eicosanoic acid and n-hexadecanoic acid were the major compounds derived from pork oil. In the case of chicken oil E-2-octadecadecen-1-ol, eicosanoic acid, sulphurous acid and 2-propyl tetradecyl ester were predominant compounds. The current article explores a way in reducing solid waste and subsequently fingerprinting the compounds deriving from fat source. The characteristics of oil derived from waste fats would help to decide the blend ratio in biodiesel.